
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 23 – Algorithms and Analysis

Prof. Katherine Gibson

Prof. Jeremy Dixon

Based on slides from previous iterations of the course

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Review: Tuples

• Create five tuples about you

– (e.g., your major is CMSC, your age is 19)

• Create a tuple with all of the courses you’re
taking this semester

• Create a tuple with a single element

• Create an empty tuple

• Create a tuple by casting a list

3

www.umbc.edu

Review: Dictionaries

• Create a dictionary that contains four different
(key, value) pairs, similar to “a is for apple”

– Add one additional (key, value) pair

– Update one of your (key, value) pairs

– Remove one of your (key, value) pairs

• Why must dictionary keys be unique?

• Do values need to be unique?

4

www.umbc.edu

Review: Matching Symbols

• Match the following data types to the symbols
needed to create them (may be more than one)

5

String

List

Dictionary

Tuple

" "

()

{ }

[]

' '

www.umbc.edu

Review: Matching Symbols

• Match the following data types to the symbols
needed to create them (may be more than one)

6

String

List

Dictionary

Tuple

" "

()

{ }

[]

' '

www.umbc.edu

Review: Mutability

• Which of the following are mutable data types?

7

String

Boolean

List

Integer

Float

Dictionary

Tuple

???

???

???

???

???

???

???

www.umbc.edu

???Mutable

Review: Mutability

• Which of the following are mutable data types?

8

String

Boolean

List

Integer

Float

Dictionary

Tuple

???

???

???

???

???

???

Immutable

Immutable

Mutable

Immutable

Immutable

Immutable

www.umbc.edu

Review: Implementation

• You are given a dictionary of the NATO phonetic
alphabet, in the form:
alpha = {"A" : "Alpha", "B" : "Bravo",

"C" : "Charlie", ... etc.}

• Write a function to convert a string from the
user into its phonetic code words

– You only need to handle letters (case insensitive)

9

www.umbc.edu

Review: Implementation Example

• Here is an example of how it should work:
Please enter a word: EXAMPLE

The word "EXAMPLE" becomes

"Echo X-ray Alpha Mike Papa Lima Echo"

Please enter a word: dogmeat

The word "dogmeat" becomes

"Delta Oscar Golf Mike Echo Alpha Tango"

10

www.umbc.edu

Any Questions about the
Material we Just Reviewed?

www.umbc.edu

Today’s Objectives

• To learn more about searching algorithms

– Linear search

– Binary search

• To understand why certain algorithms are
“better” than others

• To learn about asymptotic performance

– To examine how fast an algorithm “runs”

12

www.umbc.edu

Search

www.umbc.edu

Searching

• Sometimes, we use the location of a piece of
information in a list to store information

• If I have the list [41, 50, 22, 9, 17],
there may be some significance to this order

– That means sometimes we want to find where in
the list something is!

14

www.umbc.edu

Exercise: Search

• Write a function that takes a list and a variable
and returns the first location of the variable in
the list

– If it’s not found, return -1

def find(myList, myVar):

15

www.umbc.edu

Exercise Solution

def find(myList, myVar):

for i in range(0, len(myList)):

if myList[i] == myVar:

return i

we didn't find the variable

return -1

16

www.umbc.edu

Linear Search

• This is called linear search!

• It’s a pretty common, simple operation

• It’s especially useful when our information
isn’t in a sorted order

17

www.umbc.edu

Searching Sorted Information

• Now, imagine we’re looking for information in
something sorted, like a phone book

• We know someone’s name, and want to find
their entry in the book (just like we knew the
variable we were trying to locate earlier)

• What is a good algorithm for locating their
phone number? Think about how you would
do this.

18

www.umbc.edu

Algorithm in English

• Open the book midway through.
– If the person’s name is on the page you opened to

• You’re done!

– If the person’s name is after the page you opened to
• Tear the book in half, throw the first half away and repeat

this process on the second half

– If the person’s name is before the page you opened to
• Tear the book in half, throw the second half away and repeat

this process on the first half

• This is very hard on phone books, but you’ll find the name!

19

www.umbc.edu

Binary Search

www.umbc.edu

Binary Search

• We can use this to search sorted lists!

• To make our problem slightly easier, let’s make
it the problem of “checking to see if
something is in a sorted list”

– For purposes of our example, if there’s no
“middle” of the list, we’ll just look at the lower of
the two possible indices

– So if the list has 11 elements, the fifth one would
be our middle

21

www.umbc.edu

Binary Search

• Binary search is a problem that can be broken
down into

– Something simple (breaking a list in half)

– A smaller version of the original problem
(searching that half of the list)

• That means we can use ...

22

recursion!

www.umbc.edu

Exercise: Recursive Binary Search

• Write a recursive binary search!
• Remember to ask yourself:

– What is our base case(s)?
– What is the recursive step?

def binarySearch(myList, item):

• A hint: in order to get the number at the
middle of the list, use this line:

myList[len(myList) // 2]

23

www.umbc.edu

Exercise Solution
def binarySearch(myList, item):

if(len(myList) == 0):

return False

middle = len(myList) // 2

if(myList[middle] == item):

return True

elif(myList[middle] < item):

return binarySearch(myList[middle+1:], item)

else:

return binarySearch(myList[:middle], item)

24

www.umbc.edu

Algorithm Run Time

www.umbc.edu

Run Time for Search

• Say we have a list that does not contain what
we’re looking for.

• How many things in the list does linear search
have to look at for it to figure out the item’s
not there for a list of 8 things?

• 16 things?

• 32 things?

26

www.umbc.edu

Run Time for Search

• Say we have a list that does not contain what
we’re looking for.

• What about for binary search?

– How many things does it have to look at to figure
out the item’s not there for a list of 8 things?

– 16 things?

– 32 things?

• Notice anything different?

27

www.umbc.edu

Different Run Times

• These algorithms scale differently!

– Linear search does work equal to the number of
items in the list

– Binary search does work equal to the log2 of the
numbers in the list!

• A log2(x) is basically asking “2 to what power
equals x?”

– This is the same as saying, “how many times must we
divide x in half before we hit 1?”

28

www.umbc.edu

Different Run Times

• As our list gets bigger and bigger, which of the
search algorithms is faster?

– Linear or binary search?

• How much faster is binary search?

29

www.umbc.edu

Another Example

www.umbc.edu

Sum of All Products

• Say we have a list, and we want to find the
sum of everything in that list multiplied by
everything else in that list
– So if the list is [1, 2, 3], we want to find the value of:

– 1*1 + 1*2 + 1*3 + 2*1 + 2*2 + 2*3 + 3*1

+ 3*2 + 3*3

• As an exercise, try writing this function!
def sumOfAllProducts(myList):

31

www.umbc.edu

Exercise Solution

def sumOfAllProducts(myList):

result = 0

for item in myList:

for item2 in myList:

result += item * item2

return result

32

www.umbc.edu

Run Time for Sum of All Products

• How many multiplications does this have to
do for a list of 8 things?

• For 8 things, it does 64 multiplications

– 16 things?

• For 16 things, it does 256 multiplications

– 32 things?

• For 32 things, you do 1024 multiplications

• In general, if you give it a list of size N, you’ll
have to do N2 multiplications!

33

www.umbc.edu

Asymptotic Analysis

www.umbc.edu

Asymptotic Analysis

• For a list of size N, linear search does N operations.
So we say it is O(N) (pronounced “big Oh of n”)

• For a list of size N, binary search does lg(N)
operations, so we say it is O(lg(N))

• For a list of size N, our sum of products function does
N2 operations, which means it is O(N2)

• The function in the parentheses indicates how fast
the algorithm scales

35

www.umbc.edu

Example

• What is the big O of the following, given a list
of size N:

for i in myList:

for j in myList:

for k in myList:

print(i*j*k)

• This will be O(N3)

36

www.umbc.edu

Any Other Questions?

www.umbc.edu

General Announcements

• Lab 12 this week – last lab of the semester!

• Project 2 is out

– Due by Monday, May 9th at 8:59:59 PM

– Extension!

• Next Class: Sorting

38

www.umbc.edu

Announcements: Surveys

• The second survey will be released and
announced on Blackboard shortly

– This is 1% of your grade, and is your chance to give
feedback on your experience with the course

• Now, we will be doing the in-class SCEQ (Student
Course Evaluation Questionnaire)

– This is an important metric for assessment

39

www.umbc.edu

SCEQ Details

• Use only a #2 pencil

• Catalog number should be in top left corner

• Fill in the number of credits earned towards
your degree at the beginning of the semester

– If less than 100, fill the two right-most columns

– If less than 10, fill the right-most column

• Fill in your cumulative GPA

– Fill unknown digits with “0”

40

www.umbc.edu

SCEQ Details

• Fill in your officially declared major

– If you haven’t declared a major, enter “00”

– If yours isn’t listed, raise your hand and I’ll tell you
41

Computer Sci 63 Applied Physics 62

Computer Eng 07 Atmo Physics 41

Information Sys 83 Eng (General) 76

Math 61 Chemical Eng 37

Bioinformatics 98 Biology 55

www.umbc.edu

SCEQ Details

• For this course, fill out the Scantron, sections:

–A (General)

–B (Lecture) – “Instructor A” column only

–D (Laboratory)

• Fill out the Blue sheet

– Additional comments can be written on the back

• Bring completed sheets to the front

42

